G-protein Signaling Components GCR1 and GPA1 Mediate Responses to Multiple Abiotic Stresses in Arabidopsis
نویسندگان
چکیده
G-protein signaling components have been implicated in some individual stress responses in Arabidopsis, but have not been comprehensively evaluated at the genetic and biochemical level. Stress emerged as the largest functional category in our whole transcriptome analyses of knock-out mutants of GCR1 and/or GPA1 in Arabidopsis (Chakraborty et al., 2015a,b). This led us to ask whether G-protein signaling components offer converging points in the plant's response to multiple abiotic stresses. In order to test this hypothesis, we carried out detailed analysis of the abiotic stress category in the present study, which revealed 144 differentially expressed genes (DEGs), spanning a wide range of abiotic stresses, including heat, cold, salt, light stress etc. Only 10 of these DEGs are shared by all the three mutants, while the single mutants (GCR1/GPA1) shared more DEGs between themselves than with the double mutant (GCR1-GPA1). RT-qPCR validation of 28 of these genes spanning different stresses revealed identical regulation of the DEGs shared between the mutants. We also validated the effects of cold, heat and salt stresses in all the 3 mutants and WT on % germination, root and shoot length, relative water content, proline content, lipid peroxidation and activities of catalase, ascorbate peroxidase and superoxide dismutase. All the 3 mutants showed evidence of stress tolerance, especially to cold, followed by heat and salt, in terms of all the above parameters. This clearly shows the role of GCR1 and GPA1 in mediating the plant's response to multiple abiotic stresses for the first time, especially cold, heat and salt stresses. This also implies a role for classical G-protein signaling pathways in stress sensitivity in the normal plants of Arabidopsis. This is also the first genetic and biochemical evidence of abiotic stress tolerance rendered by knock-out mutation of GCR1 and/or GPA1. This suggests that G-protein signaling pathway could offer novel common targets for the development of tolerance/resistance to multiple abiotic stresses.
منابع مشابه
The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling.
Heterotrimeric G proteins composed of alpha, beta, and gamma subunits link ligand perception by G protein-coupled receptors (GPCRs) with downstream effectors, providing a ubiquitous signaling mechanism in eukaryotes. The Arabidopsis thaliana genome encodes single prototypical Galpha (GPA1) and Gbeta (AGB1) subunits, and two probable Ggamma subunits (AGG1 and AGG2). One Arabidopsis gene, GCR1, e...
متن کاملThe Arabidopsis Putative G Protein–Coupled Receptor GCR1 Interacts with the G Protein a Subunit GPA1 and Regulates Abscisic Acid Signaling
Heterotrimeric G proteins composed of a, b, and g subunits link ligand perception by G protein–coupled receptors (GPCRs) with downstream effectors, providing a ubiquitous signaling mechanism in eukaryotes. The Arabidopsis thaliana genome encodes single prototypical Ga (GPA1) and Gb (AGB1) subunits, and two probable Gg subunits (AGG1 and AGG2). One Arabidopsis gene, GCR1, encodes a protein with ...
متن کاملG-protein complex mutants are hypersensitive to abscisic acid regulation of germination and postgermination development.
Abscisic acid (ABA) plays regulatory roles in a host of physiological processes throughout plant growth and development. Seed germination, early seedling development, stomatal guard cell functions, and acclimation to adverse environmental conditions are key processes regulated by ABA. Recent evidence suggests that signaling processes in both seeds and guard cells involve heterotrimeric G protei...
متن کاملGCR1 can act independently of heterotrimeric G-protein in response to brassinosteroids and gibberellins in Arabidopsis seed germination.
Signal recognition by seven-transmembrane (7TM) cell-surface receptors is typically coupled by heterotrimeric G-proteins to downstream effectors in metazoan, fungal, and amoeboid cells. Some responses perceived by 7TM receptors in amoeboid cells and possibly in human cells can initiate downstream action independently of heterotrimeric G-proteins. Plants use heterotrimeric G-protein signaling in...
متن کاملThe G-protein-coupled receptor GCR1 regulates DNA synthesis through activation of phosphatidylinositol-specific phospholipase C.
Different lines of evidence suggest that specific events during the cell cycle may be mediated by a heterotrimeric G-protein activated by a cognate G-protein coupled receptor. However, coupling between the only known Galpha-subunit of the heterotrimeric G-protein (GPA1) and the only putative G-protein coupled receptor (GCR1) of plants has never been shown. Using a variety of approaches, we show...
متن کامل